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NOTE ON PRIMITIVE WORDS 

BY 

E. RIPS 

ABSTRAC-"r 

This note presents an example that disproves, for n = 4, Weinbaum's conjec- 
ture, that if w is a cyclically reduced primitive word in F. such that all the 
generators x E X appear in w then some cyclic permutation of w can be 
partitioned into n words generating F .  : w =- u v ,  v u  =- s i s 2 " ' "  s., 
(sl, s2," ', s.) = F.. 

An element of a free group is called primitive if it can be included in a set of 

tree generators of the group. 

Let F. be a free group of rank n on a fixed set X of free generators. We 

identi~y the elements of F. with reduced words. Weinbaum [3] conjectured that 

i t  w is a cyclically reduced primitive word in F. such that all the generators 

x E X appear in w then some cyclic permutation of w can be partitioned into n 

words generating 17. : w =-- uv, vu ~ - -  s i s 2  ~  sn, (Sl ,  $ 2 , ' "  ", s n )  = F.. 

For n = 2 this was proved by Nielsen [2], and for n = 3 and a positive w the 

same was proved by Weinbaum [3]. 

We bring an example that disproves this conjecture for n = 4. Let X = 

{a, b, c, d}. The element 

w - b-la-lbab-labd-lc- ldcd- 'cd 

is cyclically reduced, contains all the generators and it is primitive because it 

belongs to the following system of free generators of F,: 

{b-l a-, bab-l abd-~ c-~ dcd-~ cd, b-~ a-~ bab-l ab, 

b-, a-, baba-l b-l ab, d-, c-l dcdc-l d-, cd}. 

We claim that no cyclic permutation of w can be partitioned into 4 words 

generating F,. 

The following argument enables us to avoid checking all the possible cases. 
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Let u - b - l a - l b a b - ' a b  and v = d - l c - ~ d c d - ~ c d .  It is easy to check that u (v) 

cannot be partitioned into two words that generate (a, b) ((c, d)). If the cyclic 

word w =- uv is partitioned into words that generate F4 then intersections of 

these words with u (v) generate (a, b) ((c, d)). Therefore, each of the words u 

and v must have a non-empty intersection with at least three of these words. In 

particular, if there is a partition of the cyclic word uv into four words generating 

F4 then u = UoUlU2, v ~ VoV~V2 and 

(ul, U2Vo, v~, V2Uo) = F4 

where Uo, Vl, u2, Vo, v~, v2 are non-empty words. 

There are 15 different ways to partition u into 3 non-empty words. In the 

following 3 cases 

(1) u o - - b  -~, u~-~a-~bab- 'a ,  u2=-b; 

(2) uo =- b-~a -~, u, =- bab -l, u2 = ab ; 

(3) Uo = b - l a - ' b ,  u, = a, u2 = b-~ab 

the words Uo, Ul, u2 do not generate (a, b). We collect the 12 remaining 

possibilities for Uo, Ul, u2 and 12 similar possibilities for vo, v ,  v2 into the 

following table: 

W o I~ t ~ 2 Vo I)1 I)2 

1 b- '  a - '  bab- 'ab  d ' c- '  dcd - ' cd  
2 b- '  a 'b ab- lab  d- '  c - ' d  cd - ' cd  
3 b- '  a - ' ba  b- tab  d - '  c - 'dc  d - ' c d  
4 b -~ a - ' bab  -I ab d - '  c - ldcd  1 cd 

5 b - ' a - '  b ab - ' ab  d-~c ' d cd - ' cd  
6 b - ' a - '  ba b-~ab d-~c -' dc d - ' c d  
7 b - ia  -~ bab-~a b d- lc  -` dcd - ' c  d 
8 b - ' a - ' b  ab -~ ab d - l c - ' d  cd -~ cd 
9 b - ' a - ' b  ab - ta  b d - ' c - ' d  cd- lc  d 

10 b-t a - '  ba b- '  ab d- '  c- '  dc d -~ cd 
11 b - ' a - ' b a  b - la  b d - ' c  'dc d 'c d 
12 b-J a - '  bab -' a b d - l c - '  dcd -' c d 

In 136 cases out of 144 (excluding the cases 1-7, 1-12, 4-7, 4-12, 7-1, 7-4, 

12-1, 12-4) the set {ul, U2Vo, Vl, v2uo} has the Nielsen property and therefore does 

not generate F,. In the 8 remaining cases we get a set with the Nielsen property 

after doing one elementary transformation and in such a way we check that the 

set {ul, U2Vo, Ol, t~2U0} does not generate F4. 
For example, in the case 1-7, applying an elementary transformation to the set 

{a -1, b a b - l a b d - l c  -~, dcd-~c, db-l},  we obtain a new set {a-~ ,bab- labd-~c  -~, 

bcd-lc ,  db -~} which possesses the Nielsen property. Hence it does not generate 

/=4 and then (a -~, bab-~ abd- l  c-~, dcd-~ c, db-~) ~ F4. 
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